Hall Ticket Number:											

Code No.: 6201M

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. I Year (ECE) II-Semester (Make Up) Examinations, Sept./Oct.- 2015 (Embedded Systems and VLSI Design)

Mixed Signal IC Design

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 X 2=20 Marks)

- 1. Explain how analog and digital operations are performed by the same circuit. What are such circuits called?
- 2. Calculate the equivalent resistance of a 5pF capacitance sampled at a clock frequency of 100 KHz.
- 3. Discuss the problems that arise in integrating analog and digital circuits on the same substrate.
- 4. Describe the operation of a non inverting discrete time integrator working on two clock phases.
- 5. Explain aperture jitter in a Sample and Hold circuit.
- 6. Suggest a circuit for Sample and Hold operation used to minimize slewing time.
- 7. Define resolution and differential non linearity (DNL) of a data converter.
- 8. An ideal 10-bit unipolar Digital to Analog converter has $V_{LSB} = 1mV$. What is the largest output?
- 9. Discuss the advantages of oversampled converters over Nyquist converters.
- 10. Define Lock range and Capture range of a PLL.

Part-B (5 X 10=50 Marks)

11. a) What is a voltage comparator? Explain the operation of an op-Amp based comparator.b) Mention the basic building blocks of a switched capacitor resistor.	[6] [4]
12. a) Give the architecture of a switched capacitor low pass first order filter.b) Suggest one method to minimize the charge injection error in a switched capacitor	[4] [6]
comparator.13. a) With a neat circuit diagram explain the transmission gate Sample and Hold circuit. Draw the output waveforms. What are the advantages of using transmission gate in the circuit?b) Discuss quantization noise connected with ADCs.	[6] [4]
14. a) Explain VCO based Analog to Digital converter. Compare its performance with flash ADC.b) Explain thermometer code converter.	[5] [5]
 15. a) A 1-bit A/D oversampled converter has 6 dB SNR. What sample rate is required using oversampling (no noise shaping) if f₀ = 25 KHz? b) Explain an oversampled A/D converter without noise shaping. 	[4] [6]
 16. a) A type I PLL experiences a frequency step Δω at t = 0. Calculate the change in the phase error b) Explain the operation of a charge pump PLL. 	r. [4] [6]
 17. Write short notes on any two of the following: a) Latched comparator b) Diode bridge based Sample and Hold circuits c) Cyclic A/D converter 	[5] [5] [5]